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The Landau levels associated with the “needle” in zinc have been studied by numerically solving the
coupled differential equations given by applying the method of Luttinger and Kohn to Bennett and Falicov’s
k-p model. The “leakage” probability amplitudes and phases for tunneling from one monster through the
needle to another monster agree with Pippard’s semiclassical calculation. Thus, the Pippard network
model and the magnetoresistance theory of Falicov, Pippard, and Sievert is justified. There is still some
question as to the effect of magnetic breakdown on the de Haas-van Alphen amplitude associated with the
needle. Because of the complicated Landau level structure, which comes from the near degeneracy of the
bands, the various possible definitions of the g factor do not agree. The data from the magnetoresistance,
the de Haas-van Alphen effect, and the de Haas-van Alphen effect under pressure have been used to find
two possible sets of energy-band parameters for the needle. Using a plausible definition of the g factor, the
band parameter solution which agrees most closely with other theoretical calculations corresponds to a g
factor of 170, while the other solution corresponds to g=—170. An experimental selection of the correct
solution would be provided by a measurement of the effect of pressure upon the breakdown field. The
changes in the de Haas-van Alphen period and effective mass with alloying can be accounted for by reason-
able changes in band parameters, but the predicted change in breakdown field is very different from the
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experimental results of Higgins and Marcus.

I. INTRODUCTION

SEVERAL goals led to the present investigation of
the structure of the Landau levels associated with
the “needle” in zinc: (1) to understand the spin
splitting of the levels, (2) to test the semiclassical theory
of magnetic breakdown, (3) to determine the energy-
band structure near the needle, and (4) to explain the
effects of pressure and alloying upon the de Haas—van
Alphen effect. It was further desired to use a single
method of calculation that would yield all the relevant
features of the Landau levels.

The spin splitting of the needle Landau levels is
large and is resolved in oscillations of the magneto-
resistance! as a function of magnetic field and in the
de Haas—van Alphen effect.? Stark! showed that his data
were consistent with g factors of 490, 4180, or 4360.
Bennett and Falicov® used a three-band k-p model to
calculate the g factor, and found an upper limit of g=266
(including the correction of a factor 2 error in the
original paper). However, their calculation used a per-
turbation theory which is valid only if the Fermi level is
very close to the needle band edge, a condition which we
shall see is not met in zinc. O’Sullivan and Schirber?
argued from a combination of their experimental de
Haas~van Alphen data and a simple theoretical model
that the absolute magnitude of the g factor is equal to
170. We shall see below that owing to the complexity of
the Landau-level structure, different definitions of the g
factor can give different values.
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F1c. 1. Fermi-surface cross section in zinc in the plane 2,=0, z
parallel to the hexad axis. The hexagons are Brillouin-zone cross
sections and the hexagon corners are the symmetry points K.
The small triangular shapes are cross sections of the needle,
magnified by about a factor of 10. The larger starlike shapes are
cross sections of the monster. The labels P4 etc. illustrate the de-
finition of the leakage probabilities.

and found H,=2.24-0.1 kG. The semiclassical network
theory has been tested for a finife network model which
can be solved exactly.!*1% It was found that the Pippard
theory gives good agreement for the spacings of the
energy levels'* and that the Falicov-Stachowiak theory
gives good results for the amplitudes of the de Haas—
van Alphen effect.’® The present calculation justifies the
use of the basic semiclassical network model for zinc,
but does not resolve the discrepancy in the de Haas-van
Alphen amplitude factor.

The magnetoresistance of zinc is strikingly affected
by magnetic breakdown.! Falicov, Pippard, and
Sievert'® made a theory of the magnetoresistance using
the network model. Their theory could explain Stark’s
experiments when the breakdown field was chosen to be
Hy=2.7 kG. Chambers'” has justified the use of the
network model for the magnetoresistance by a direct
calculation very similar to the one presented here.

In the present paper we use the experimental in-
formation from the de Haas-van Alphen effect and the
magnetoresistance to determine the energy band struc-
ture near the needle. Previously, this information has
been only partially used. The de Haas-van Alphen
periods for various parts of the Fermi surface have been
used with the few—orthogonalized-plane-waves (OPW)
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model® and with a nonlocal-pseudopotential model®
to determine the energy-band structure throughout the
entire Brillouin zone. Bennett and Ialicov® used the
effective mass and spin splitting to determine some of
the parameters in their model. We shall make use of
the de Haas-van Alphen and Shubnikov-de Haas
period, effective mass, spin splitting, breakdown field,
and pressure dependence of the first three quantities
to determine the parameters in the Bennett-Falicov
model for the needle.

Several experimental studies have been made of the
effect of pressure upon the de Haas—van Alphen effect
in zinc.219% The Bennett-Falicov model is adapted to
zinc under pressure by changing the values of some of
the parameters. As mentioned above, the pressure
dependence of the experimental quantities is used to
help determine the band parameters. Experimental
studies have also been made of the effect of alloying
upon the de Haas—van Alphen effect in zinc.2%-212 We
try to account for the effects of alloying by changing
the values of the same band parameters which were
allowed to change with pressure. Though we can account
for the changes in the period and effective mass in a
reasonable fashion, it is not possible to account for the
change in breakdown field. The last result is in agree-
ment with a qualitative argument by Higgins and
Marcus.?

The band model and method of calculation is ex-
plained in Sec. IT. The general features of the results
are discussed and compared with the semiclassical
theory in Sec. III. The question of the value of the g
factor is also discussed in Sec. III. The experimental
data are used to determine the band parameters and
the results compared to theoretical predictions in
Sec. IV. The effects of alloying are discussed in Sec. V
and the conclusions are summarized in Sec. VI.

II. ENERGY-BAND MODEL AND METHOD
OF CALCULATION

The Brillouin zone of zinc is a hexagonal cylinder.
Energy band calculations by the OPW method,® the
pseudopotential method,’® and the augmented-plane-
wave method® all give results fairly near the free-
electron band structure. Figure 1 shows a cross section
of part of the Fermi surface in the plane k,=0 (3
parallel to the hexad axis). The small triangular pieces
near the zone corners K are the needles, so-called be-
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cause the surfaces are long in the z direction. The larger
pieces are part of the monster. We are concerned with
the Landau levels associated with the needles when the
magnetic field H is parallel to the hexad axis. The levels
are modified by magnetic breakdown between the
needle and the monster. The semiclassical orbits in %
space are the curves of constant energy shown in Fig. 1.
The orbits in direct space have the same shape but are
rotated 90° (even the small needle orbit in direct space
includes many unit cells of the lattice). The Pippard
treatment”!! replaces the orbits in direct space by a
set of intersecting circles. The electron is considered
to travel on the circle, with a probability of changing
circles at a junction. To treat the magnetoresistance,
Falicov, Pippard, and Sievert!® calculated the “leakage”
probabilities for an electron incident on one of the
input channels (labeled 1 in Fig. 1) to exit on each of
the three output channels (labeled P4, Pp, and P¢ in
Fig. 1). Resonance on the needle causes these probabili-
ties to be modulated with the de Haas—van Alphen
frequency.

Two aspects of the semiclassical treatment seem
likely to produce errors: (1) the distortion of the true
orbits into intersecting circles and (2) the neglect of
the width of the orbit, which is approximately S—/2
where S=eH/hc. For example, when a low quantum
number Landau level is at the Fermi level, the size of
the needle orbit in direct space is about S~V/2. Both of
these effects are important only near the needle.

Our procedure is to apply the method of Luttinger
and Kohn?* to the k-p model of Bennett and Falicov,?
yielding a set of coupled differential equations. The
equations are then solved numerically with the boun-
dary conditions that the solutions match onto the
Pippard solutions far from the needle.

The k-p model is a Taylor expansion of the one-
electron Hamiltonian about the symmetry point K.
As the average radius of the needle in inverse atomic
units is about 0.006, and that of the Brillouin zone is
about 0.8, only the lowest-order terms in % need be
kept. Near the point K there are three pairs of doubly
degenerate bands with energies near the Fermi level,
of symmetry types® K7, Ks, and K,. The energy
differences of importance for these bands are all less
than 0.01 Ry, while the nearest other bands at K lie
about 0.4 Ry away.® Thus, only the six-band sub-
Hamiltonian need be considered. Furthermore, the
sub-Hamiltonian does not mix spin up and spin down
so that one can treat two three-band sub-Hamiltonians.
With these approximations, Bennett and Falicov® have
shown that the most general sub-Hamiltonian allowed
by symmetry is

0 (A+oC)hk- (A —oC)hiky
go=|(A+cC)hky E.+oA/3  Bhk_ . (2.1)
4 l(A—cC)hk_ Bk, E.—oA/3

24 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
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where ¢=-1 for spin up and —1 for spin down, the
order of basis states is K4, Kg, Ky for spin up and K,
K,, Ks for spin down, energy is measured from the K-
level, the origin of % is the point K, and %, is defined
by ky=Fk,+ik, The quantity E, is the crystal po-
tential gap (called E by Bennett and Falicov) which
would be the K, K; splitting in the absence of spin-
orbit coupling (K;— Ki; Ks, K¢— Kj;). Harrison®
and Mattheiss® found E, to be negative, but smaller
than the estimated error of calculation, while Stark
and Falicov!® found E;=0.0035 Ry. The quantity A
is the spin-orbit constant which Bennett and Falicov®
estimated as 0.004 or 0.008 Ry and for which Stark
and Falicov!® found 0.0075 Ry. The quantities 4, B,
and C are velocity matrix elements. For nearly free
electrons, one has A =B=#k,/m¢=Ar, where k. is the
magnitude of the wavevector from the zone center T
to the corner K. In atomic units, 4=0.835. The
quantity C is the spin-orbit part of the velocity matrix
element. Its magnitude was estimated by Bennett
and Falicov® as C=A/6moA. Our numerical calculations
show that changing C from the above value to zero
has an effect upon the experimental quantities which is
less than half the experimental error. Thus, we neglect
C in the rest of the paper, but the details of calculations
including C can be found in the thesis of one of the
authors.?

A final parameter, which does not appear in the sub-
Hamiltonian (2.1), is the energy of the Fermi level,
which we call ¢ when it is measured from the K; level
and u when it is measured from the needle band edge.
If E.<—3A, the needle band edge is the K7 level and
p=¢, while if E,> —A/3, the needle band edge is the
K level (for spin up) and u=¢—E,—A/3.

The sub-Hamiltonian may be diagonalized numeri-
cally to find the energy-band structure in the neighbor-
hood of point K. Iigure 2 shows the energy as a func-
tion of k, and Fig. 3 shows the cross section of the
needle, both curves being calculated for one of the
possible sets of band parameters of zinc. The effective
Hamiltonian used by Chambers!” is equivlaent to (2.1)
with C=0 and A=B=A4p, though it is given in a
different representation and with a.coordinate system
rotated 90° from ours.

To introduce the magnetic field,* we choose the
Landau gauge for the vector potential A= (0,H,,0) and
use the prescription of Luttinger and Kohn?: &, is

25 J. P. Van Dyke, Ph.D. thesis, University of Oregon, 1967
(unpublished) (No. 67-10, 791, available from University Micro-
film Corporation, Ann Arbor, Mich. 48106).

26 We may use the method of Luttinger and Kohn because we
need solutions over only a small part of the Brillouin zone. For
methods valid over the entire Brillouin zone, see W. G. Chambers
(Ref. 29) and E. Brown, in Solid-State Physics, edited by F. Seitz
and D. Turnbull (Academic Press Inc., New York, 1968), Vol.
22, p. 213. Numerical calculations for another infinite network
are in F. A. Butler and E. Brown, Phys. Rev. 166, 630 (1968).
Very interesting calculations over the full zone for a single-band
model of zinc have been performed by P. S. Kapo, Ph.D. thesis,
Rensselaer Polytechnic Institute, 1967 (unpublished).
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F1c. 2. Energy versus wave number in the x direction (I'-K
line) around point K. The figure is drawn to scale for case 2, one
of the two possible sets of band parameters for zinc (see Table I).
The distance from T to K is 0.835 in a.u.™® The Fermi level is
indicated by the dashed line.

replaced by k,—1S9/0k,. The Schrédinger equation
JCy = Ey now becomes a set of three coupled first-order
differential equations in % space. To complete the
system, boundary conditions must be specified. How-
ever, we defer the discussion of the boundary conditions
until after a discussion of the properties of the solutions.

If we write each component of the three-component
wave function as

‘l’l(kz,ky) = eXP[—ikxky/S]g (ky)ft (kz) s

where g(k,) is an arbitrary function, the equations for
the f; are the same as the equations for the ¥; except
that k,—iS9/ 09k, becomes simply —iSd/dk, and kg in
(2.1) becomes k,=+Sd/dk,. We further introduce the
change of variables u=24%k,/A and

s=28124 (24°+B2)2/A?,

(2.2)

and make the transformation 3¢'=U-'3CU, ¥V =U"1f,
where

0 —2U24/(2424+B)Y2 B/ (24°+ B2
U= _21/2 B/ (2A2+BZ)1/221/2 A/(2A2+B2>1/2 .
21/2 B/ (2A2+BZ)1/221I2 A/(2A2+B2)1/2

(2.3)
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The transformed system of equations is

—sdYy/du= (Pwu~+D1)V1+DeV+DsY 3, (2.4a)

$dY 1/du=DsY 1+ (Pau-+D2)V 5
+(Pw+Dy)Y;, (2.4b)

0=L3Y1+(Pwu+DyY .
+ (Psu+Dy)V;, (2.4c)

where

Pi=—B/24, (2.5a)
Py=—%(B/4)(442>—B?)/(24%+B?), (2.5b)
P;=34B/(24*+B?), (2.5¢)
P,=212(B2— A% /(24*+B?), (2.5d)
Dy=¢—e, (2.5€)
Dy=[tB*/ (2424 B?) ]—e, (2.51)
Dy=[284%/ 2A*4-B?) ]—e, (2.59)
D4=22¢4A B/ 242+ B?) (2.5h)
Dy=—2"264/3(242+ B2, (2.51)
D¢=—0B/3(242+B2)'2, (2.5))

and e={/A and ¢=E,/A.

It is remarkable that use of the particular Landau
gauge plus the transformation has reduced the system
to two coupled differential equations, thus saving
computer time. We shall see below that there are still
three independent solutions. We can transform the
system into a single second-order differential equation;
further, it can be put into the form of a one-dimensional
Schrodinger equation with an effective potential?
which has an attractive well, corresponding to the
needle, separated by barriers from a region in which the
potential function is less than inside the well. Treatment
of this equation by the WKB approximation® yields
the Onsager-Lifshitz area-quantization rules?” for de
Haas—van Alphen period and effective mass, the semi-
classical tunneling probability®~1; and, when treated
to next order in .S, an expression for the g factor.

For the exact treatment, we used Eq. (2.4c) to
eliminate Y3, and numerically solved the two coupled
linear differential equations for ¥; and ¥, The numer-
ical integrations were started near u=U,= —D;/Ps,
which corresponds to the right-hand side of the needle
shown in Fig. 3.

Defining z=u—U,, three real independent solutions
near this point may be written

Y14=P,U,+D+0(), (2.62)
Vot=—D;40(2), (2.6b)
Vi4=0(1), (2.6¢)

7 L. Onsager, Phil. Mag. 43, 1006 (1952) ; I. M. Lifshitz in notes
added in proof to D. Shoenberg, Progress in Low-Temperature
Physics (North-Holland Publishing Co., Amsterdam, 1957),
Vol. 2, p. 226.
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ViF=Y41In|z]40(), (2.72)
Vol =Yo41n|z| —[sPs/ (PsUp+D9)]+0(z), (2.7b)
Vil=Y341nlz|+(s/2)+0(1), (2.7¢)
ViP=0(z)YV4, (2.8a)
VP=6(z)V4, (2.8b)
V3P =256(2)40(2)V 34, (2.8¢)

where 6(2) is the Heaviside step function 6(z) =1, z>0;
0(z)=—1, 2<0. The superscripts 4, L, and D stand
for analytic, logarithmic, and delta-function solutions.
The solution D, which involves discontinuities and the
delta function, is a solution to Egs. (2.4) but is not a
solution of the system of equations obtained by elimin-
ating V3. Starting with these forms, solutions for ¥4
and Y were found for positive and negative z by using
the fourth-order Runge-Kutta method on an IBM
360/50. The Wronskian of the two solutions is con-
stant, V14V F—V1LVy4=—Pss. Once Y4 is known,
Y? is also known.

For large values of |#|, any real solution can be
written in the asymptotic form

Yi~A4,[ (2424 B2)/3B*]V4 cos[ o (u)+8¢], (2.9a)
Yo~ A,[3B2/ 242+ B%) 4 sin[¢(u)+8¢], (2.9b)
Vi~ —(Py/Py)Ys, (2.9¢)
where the phase function ¢ (%) is
o(u) =[(24°+B*)"2/4sV3]
X[ 4+4U u4+0(w )], (2.9d)

and d¢ is a constant phase shift. These forms become
exact solutions in the trival case A =B, E,=A=0. Our
computer program integrates the equations until the
numerical solutions match the asymptotic form (2.9)
with suitably chosen amplitude 4, and phase d¢.
The typical total range of numerical integration was
about one-tenth of the diameter of the Brillouin zone.

The physical significance of the limiting solutions is
best exhibited by transforming to direct space and
symmetric gauge. The transformed wave function is?

V) =T wm(n), (2.100)
X;(x,y)=exp[—iny]/dkx‘/.dky
Xexpli(kax+ky,y) Wilks,k,), (2.10b)

where u; is the Bloch wave at K associated with V..
In order for the wave functions far from possible
tunnelling points (junctions) to match smoothly onto
Pippard’s free-electron functions, we must chose the
function g in Eq. (2.2) to be of the form g(k,)
=exp(—£k,%/2S). With this choice, the part of X;
contributed by the delta function in the solution

(AU
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-.005 o .005
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F16. 3. Cross section of the needle Fermi surface. The figure is
drawn to scale for case 2, one of the two possible sets of band
parameters for zinc (see Table I). The labels Py, etc., are related
to the definition of the leakage probabilities.

(2.8¢) is
X' = (2mS)V2(As/2AR)u (x,) (2.11a)
n(w,y) =exps[ —S(y—ko/S)?

where ko=AU,/2A4% is the distance from the center of
the needle to its right-hand edge. The function (2.11)
describes an electron moving in the positive x direction
along a “track” of width about S—V2 centered at y =k,/.S.
This corresponds to the vertical asymptotes shown in
Fig. 3, and we call it channel 1. The contribution to a
X; from a V; equal to exp[io(u)] is

X" =mS (2V3)12
Xexpi[ (m/12) —k?/2V3S Ju(x')y'), (2.12)

where &' =—%3x+3V3y, v =—%y—33x. This function
represents an electron traveling along an orbit rotated
by 2x/3 from the orbit just discussed, and we call it
channel 3. The contribution from a ¥, equal to
exp[ —s¢ ()] is the same as (2.12) except that the sign
of the phase factor expi[ (w/12) —ks?/2V3S7] is changed
and the orbit is rotated by —2x/3 from the first orbit.
This last orbit we call channel 2. These functions are
valid for distances from the origin much greater than
ko/S (the size of the needle in direct space) but much
less than k,/S (the size of the monster). Thus, our
asymptotic functions serve to match Pippard’s wave
functions far from the junction to our numerical
solutions.
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F1c. 4. The leakage probabilities as a function of inverse
magnetic field strength. The circles are the results of the exact
numerical calculations and the lines are the semiclassical theory
with the period and phases adjusted to give best agreement
with the exact results. The results are for case 3, one of the two
possible sets of band parameters for zinc (see Table I). The
abscissa is related to the quantity used in the text by S.=1.098s.

In order to use the trigonal symmetry, we change to
the same basis functions used by Chambers'’: |k1),
| ko), |ks), where |ki) rotated by 2w/3 becomes |ks),
etc. In the free-electron case, | k1) is just the plane wave
with k= (k.,0,0). The relation to the basis states Ky,
Ks, Ky are? (for spin up)

[K7>= [k1>+w2‘k2>+w|]€3>, (213&)
| Ks)=|k1)+| ko) + | ka), (2.13b)
IK9>= |k1)-|-w|k2>—|—w2[k3>, (213C)

where w=exp(27i/3). In terms of these basis functions,
the part of an asymptotic solution such as (2.9) going
like exp(i¢) becomes

iwA S (V3/2)V2 expil 8o+ (r/12) —k2/2V3S]
Xp (o', ) [wB| k1) +eB| ko) talks)], (2.14)

where a= (24+B)/[3(242+B2) ]2 and = (B—A4)/
[3(242+B?)JV2. The phase factor iw expi[ 8o+ (r/12)
~k/2V3S] can be written expi[do+ (S7/4)—ke/
2v3S]=expir. To obtain the contribution from the
exp(—i¢) factor, we take the complex conjugate of the

VAN DYKE, McCLURE, AND DOAR 1

phase factor and rotate the rest of the function by
+27/3.

To make contact with Pippard’s work, we want to
find the probability amplitudes for the three output
channels (labeled P4, P, and P¢in Figs. 1 and 3) when
a wave of unit intensity is on one of the input channels.
We can satisfy the conditions on the input channels
by taking the correct linear combination of three
independent solutions. The easiest three solutions to use
are the analytic solution (which contains only channels
2 and 3) and the functions obtained by =4=2x/3 rota-
tions of the analytic solution. Calling 8¢, r the phase
shift on the left or right side for the analytic solution
and A, r the corresponding amplitude factor, we find
for the probability amplitudes

a=[(A*—Ar")/Ard] exp[i(Sor+1)],

b={Ap exp[—i(bor+200.437)]
+A 1, exp[i(26pr+801+37)1}/d,

c=[(Ar*—A41/A1d] exp[—1(Ber+7)],

where

d=(Ar*/ A1) exp[ —i(28¢or+der+37)]
+(A12/Ag) exp[i(6or+20¢.+37)]. (2.15d)

The phase of each channel is referred to the center of
the side of the needle. The leakage probabilities are the
absolute squares of the amplitudes: P,=a|? etc.
In this form, the probability amplitudes automatically
satisfy the conditions ab*+4-bc*+ca*=0 and |a|24|b|?
+|c|2=1, which are necessary for conservation of
electrons. Other forms can be derived which are more
accurate for numerical work, such as

(2.15a)

(2.15b)
(2.15¢)

PA =AL2/(A L2+A R2+P3$/ﬂ‘) y (216&)
Pp=(Pys/m)/(A2+Ag*+Pss/m), (2.16b)
Po=Ag/ (A*+AR*HPss/n). (2.16¢)

The calculation of Chambers!? is similar to ours, but
in a different Landau gauge, and for A=B=A4p. He
gave his results in terms of the magnetoresistance while
we give the leakage probabilities which come into the
magnetoresistance formula of Falicov, Pippard, and
Sievert.!6

There are several ways of calculating the effect of
magnetic breakdown on the de Haas-van Alphen effect.
In the thesis of one of the authors,? plausible boundary
conditions were applied to the asymptotic solutions
(2.9) and the density of states in energy calculated
numerically. This density of states was fit to a simple
formula derived by Pippard® (for a finite network
consisting of a triangular orbit and three large loops),
using the Landau-level position and the breakdown field
as free parameters. Pippard showed that this density of
states gives a ¢* amplitude factor for the de Haas—van
Alphen effect. (For our purpose, ¢ must be calculated
using the value of Hy chosen to fit the numerical density
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of states.) Another method would be to use the numer-
ically calculated leakage probability amplitudes (2.15)
to replace the corresponding quantities in Pippard’s
network model,! and then Fourier analyze the calculated
density of states. We shall discuss the relationship
between these methods in Sec. III.

III. COMPARISON OF EXACT AND
SEMICLASSICAL RESULTS

Extensive numerical calculations were carried out
for a range of band parameters and magnetic field
strengths (about 1.5-1000 kG). A typical result for
the leakage probabilities is shown in Fig. 4.

The spacing of the probability peaks in inverse field
gives the de Haas-van Alphen period P. Our results
showed a very slight quantum effect, i.e., the spacing
of low quantum number peaks is about 2.5%, smaller
than the Onsager-Lifshitz?” value, which holds at large
quantum numbers. The spacing of the peaks in energy
gives the effective mass m*/mo=heH /moc(Eny1—En).
In some cases, the effective masses for spin up and spin
down were slightly different (to be discussed in Sec. IV),
but the average value agrees with the Onsager-Lifshitz?
rule to within 49%,.

The leakage probability amplitudes from the semi-
classical model are?

a=ge B[ 1—qe®]/d, (3.1a)
b=p¥/d, (3.1b)
c=qp%®3/d, 3.1¢)
d=1—g%"®, (3.1d)

where we use Pippard’s rule, ¢g=|¢|, p=1|p|, and the
phase of each channel is referred to the center of the
side of the needle. The absolute squares of these ex-
pressions give the probabilities of Falicov, Pippard,
and Sievert.!® The quantity ® is the phase change in one
circuit of the needle orbit ®=2#[(1/PH)+6]. The
semiclassical probabilities are also plotted in Fig. 4,
using values of P and 6 to make the location of the peaks
agree with the numerical calculations, but using the
semiclassical expression for p and ¢, including the value
of the breakdown field,*® which, applied to this
model, gives

Ho=(r/3V3) (hc/€) (A/A)Q, (3.2a)
Q=Up—(A/B)e[(e—£)*—1/9]/Up. (3.2b)

It is seen in Fig. 4 that the exact probabilities and the
semiclassical probabilities are in excellent agreement,
even for very small quantum numbers (large H). Thus,
we agree with Chambers!” that the semiclassical theory
of magnetoresistance of [Falicov, Pippard, and Sievert!®
is accurate for zinc.

28 A. B. Pippard, Proc. Roy. Soc. (London) A287, 165 (1965).
The formula given in the Appendix of this work differs from (3.1)
due to the different reference point for the phase.
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Using the correct period and phase in (3.1) instead of
those calculated on the network model (the period
using the network model is off by 10-209%,) seems to
compensate for the distortion of the orbits in the
network model. However, it is striking that the semi-
classical theory is so good for small quantum numbers.
We did find deviations from the semiclassical theory
when He>>1/P, but this region is not very interesting
experimentally as the breakdown effects occur only in
the quantum limit (2 1/P). This last condition can be
understood on a geometric argument. The semiclassical
expression for p is exact for pairs of hyperbolic orbits,?:10
the breakdown field being proportional to the ‘“‘area
of contact” of the orbits in & space®?® with the same
proportionality constant that relates the inverse de
Haas—van Alphen period to the area of a closed orbit.?
For the semiclassical theory to be accurate, the regions
where the needle and monster approach each other
must look hyperbolic, i.e., the needle cross section must
be more triangular than circular. For the needle to
have sharp corners, the area of contact must be much
less than the area of the needle, i.e., Ho<<1/P.

We now turn to the question of the density of states
and the effect of breakdown upon the de Haas—van
Alphen effect. As mentioned in Sec. II, a calculation
has been done? applying plausible boundary conditions
to the asymtotic form (2.9). In this calculation, the
density of states could be fit very well with Pippard’s
formula, but with a value of breakdown field about
0.7-0.75 of the semiclassical value (3.2). One is tempted
to offer this as an explanation of the fact that the
Higgins and Marcus® value of Ho=2.2 kG from the
de Haas—van Alphen effect is 0.81 of the value Hy=2.7
kG from the magnetoresistance experiment.!'*® How-
ever, the question of the proper boundary conditions is
quite subtle and those used could be wrong. Another
approach is to check the basic network model. Our
numerical calculations of the phases of the leakage
probability amplitudes (2.15) agree fairly closely with
the phases of the semiclassical expressions (3.1). Over
a range of different fields, Fermi energies, and other
band parameters, we find the numerical phases are
about 0.06 rad larger than the semiclassical phases.
The standard deviation of about 0.03 rad is probably
the error in the phase calculation, which is less accurate
than the probability amplitude calculation. Thus, the
Pippard network theory should be accurate for cal-
culating the density of states, which requires the phases
as well as the magnitudes of the probability amplitudes.
Pippard’s numerical calculations!! gave a de Haas-van
Alphen amplitude factor of ¢* for a large needle size
and a factor of ¢3¢ for the size appropriate to mag-
nesium. In zinc, the needle diameter is about 20 times
smaller than in magnesium, so one would expect an
even larger exponent than 3.6. A factor ¢*-¢ (with ¢
calculated from the semiclassical Hy) corresponds to a

2 W. G. Chambers, Phys. Rev. 149, 493 (1966).
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Fic. 5. The spin-splitting parameter versus the ratio of the
crystal potential gap to the spin-orbit constant. The solid curve
is the exact result for B/4=1.0 and e=u/A=1.4. The broken
curve is the corrected Bennett-Falicov result (Ref. 3) for B/A4
=1.0. For B/A not unity, the exact curve is shifted in ¢ by ap-
proximately 2.5 ¢(1—B/A), and the right branch of the Bennett-
Falicov curve is changed. However, the endpoints of the right
branch are independent of B/A. The arrows on the ordinate
indicate the values of & allowed by experiment, and the arrows
on the abscissa indicate the corresponding allowed values of &.

smaller de Haas-van Alphen amplitude, which cor-
responds to a smaller effective H, if the amplitude is
represented by ¢? (as it is in both the analysis of Higgins
and Marcus and in our numerical calculations).

However, the Green’s-function theory of Falicov
and Stachowiak!? gives an amplitude factor ¢%, with ¢
being calculated with the semiclassical H,. Also,
Chambers obtained the same result in an approximate
calculation.? Falicov and Stachowiak demonstrated the
agreement of their method with Pippard’s by a numer-
ical calculation involving a set of orbits which did
not include the needle orbit. Thus, the theoretical
situation is unclear, though the two experimental
breakdown fields do differ by what seems to be more
than experimental error. It is important for the Pippard
network model to be solved accurately for very small
needle size, which limit may simplify the calculation.
Because of this uncertainty, all our results for the
band parameters use the magnetoresistance breakdown
field.

Up to this point, the Onsager-Lifshitz?" rules plus
Pippard’s semiclassical-network theory have proved
adequate. However, this is not true for the spin splitting.
The peaks in probability (or density of states) may be
represented by 1/H = (n++vy-+ad)P, where § represents
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the spin splitting and is related to the g factor by
g=40mo/m*. The Bennett-Falicov calculation of & uses
perturbation theory and is valid if the Fermi level is
very near the needle band edge, which implies that the
needle cross section is circular. Their corrected result is

5=1/6£) £<_%) (3.38.)
§=3[(B/A)»=3¢]/[(B/A)+2+3¢], £ —3. (3.3b)

Note that their result is independent of the I'ermi
energy and is independent of B/A for ¢< —3%. Their
result is shown in Fig. 5, for B=A4. We calculated & by
measuring the distance between spin-up and spin-
down peaks in the numerical results, such as shown in
Fig. 4. The numerical result for § is also plotted in Fig. 5
for B=4 and a particular Fermi level. There is an
ambiguity in determining § by our method, the same
ambiguity as in analyzing the experimental results!:
Which peaks are to be regarded as a spin-split pair?
For a particular v, we can get the same set of peak
positions by changing & by any integer; or, we can also
get the same set by adding 4 to v and subtracting %
plus any integer from 6. The experimental ambiguity
is twice as great, as it is not known which peaks are
spin up and which are spin down. In Fig. 5, we have
resolved the ambiguity in such a way as to obtain the
best comparison with Bennett and Falicov.? OQur results
depend upon the Fermi energy; they agree well with
Bennett and Falicov at small Fermi levels, but differ by
as much as 0.1 for parameters characteristic of zinc.
For B/A not equal to unity, the exact curve is shifted
in £, whereas only the right-hand branch of the Bennett-
Falicov curve is modified. Even though the agreement
between the two theories seems fair for the case shown
in Fig. 5, the derivatives of § with respect to £ and e are
quite different. These derivatives are needed in Sec. IV
in explaining the effects of pressure. The WKB result?
agrees well with the exact result far from the discon-
tinuity near £=3. Instead of showing the discontinuity,
the WKB result has the form of a dispersion curve.
One may still ask: “What is the true g factor?”” There
are several ways to answer the question which, due to
the complexity of the level structure, give different
answers. One method is to let the spin-orbit constant A
approach zero so that the levels which come together
can be called spin-split pairs. This works for £¢< —3,
for the band edge stays a nondegenerate K; throughout
the limiting process, and one finds the result shown in
Fig. 5. However, for £>0, the curve of Fig. 5 would
have to be shifted up by % so that § would go to zero
as A goes to zero ({—). For the region —3<£<0,
the band edge changes from K3 to K7 during the limiting
process and the levels cannot be traced. Another
method is to calculate the result if an electron-spin
resonance experiment could be performed. This has
been studied by using a simple model in which the Ky
level is far enough below the K7 and K levels so that
it can be eliminated by perturbation theory.” The
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result gives the same curve as in TFig. 5, except that
near the discontinuity two resonances could be seen,
the weaker resonance corresponding to extrapolations
of each branch of the curve. Finally, one could follow
Stark’s suggestion! to see if any of the predicted levels
at low quantum number are missing. In our calcula-
tions near &= —3%, all the predicted levels appear
(shifted somewhat by the quantum effects), though the
last two peaks are so weak that they probably could
not be seen experimentally. The Stark criteria would
shift the left-hand branch in Fig. 5 up by %, and the
right-hand branch down by 3, to remove the dis-
continuity. However, the Stark criteria fails in this
case as it is possible that there are Landau levels which
move below the needle band edge as H increases.?
Because of its agreement with both the dominant spin
resonance and the Bennett-Falicov theory, we adopt
the convention of Fig. 5, but keep in mind the possi-
bility of ambiguity for £> —3.

IV. ENERGY-BAND PARAMETERS
AND EFFECT OF PRESSURE

Our energy-band model has five parameters: E, A, 4,
B, and {. The experiments on pure zinc at atmospheric
pressure give us five numbers: the de Haas-van Alphen
period® P=6.3X10"5 G7, the effective mass'®3
m*/me=0.0075, the breakdown field'® H,=2.7 kG, and
the spin-splitting parameters'? §=-+0.18, y=0.32 (or
6=-0.32, v=0.8). However, the quantity vy is of
limited usefulness in determining the band parameters,
so we begin by fixing B/4 and using the first four experi-
mental quantities to determine the other band param-
eters. As was mentioned above, B/4 =1 for nearly free
electrons. A crude tight-binding calculation yielded
an upper limit of B/4 =2, so that we investigated the
range 0.5-2.0. Because of the ambiguity, there are six
possible solutions for 4, as indicated in Fig. 5. We
number these solutions from left to right in £, and they
correspond to §=—0.18, —0.36, 0.36, 0.18, —0.18, and
—0.36, respectively.

The procedure used to find the band parameters was
as follows: Values of £ and e were assumed and the
WXKB results for P and m* used to fix 4 and A (unique
analytic solutions exist?®®). Then for each spin the
leakage probabilities were calculated for six values of H
spread over a cycle near H=H,, and the results for
Pp least-square fitted to the semiclassical expression
with H, and 0 as adjustable parameters. The fits were
quite good and H, was always near the semiclassical
value. The difference between the 8’s for spin up and
spin down then provided 8. The computer then ad-
justed £ and e to obtain the experimental values of Ho
and 8. A large enough region of the &, e plane was
explored to make certain that there were no undis-
covered solutions with reasonable parameter values.
For a fixed B/A, the uncertainties in the parameters

% A. S. Joseph and W. L. Gordon, Phys. Rev. 126, 489 (1962).
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due to uncertainties in the experimental quantities
were small (greatest uncertainty is 5%).

For each value of 8, the experiment requires a
definite value of . The theoretical values of v for cases
2, 3, and 6 agree with the experimental values to
within 0.02 for the entire range of B/A while the vy
values for the other cases disagree by about 0.4 or 0.5.
Thus, using the value of vy reduces the number of
cases by half, but does not help determine B/A4. The
band parameters for cases 2 and 3 are in a reasonable
range compared to the previous theoretical estimates,
but the spin-orbit splitting for case 6 is more than an
order of magnitude smaller than the theoretical
estimates.

In order to determine B/A, we make use of the
experiments on the change in de Haas—van Alphen
effect with pressure.??®? Three new experimental
numbers are available, the change with pressure of
the period, mass, and spin splitting. We now argue
that only two new parameters are necessary to explain
the pressure effects. First of all, hydrostatic pressure
does not change the symmetry of the lattice, so that the
band model (with altered values of the parameters) is
valid for zinc under pressure. For an applied pressure
of 1 kbar the fractional reduction in ¢ spacing® is
12.23X10~* and that in the @ spacing is 1.55X10~4
The fractional changes in the band parameters are
expected to be of the same order of magnitude except
in two cases. The change in the axial ratio ¢/e causes a
large fractional change in the local Fermi energy, as has
already been pointed out.?!:32:3 The free-electron Fermi
energy of unstressed zinc is 0.701 Ry, while the energy
of corner K is 0.697 Ry. Therefore, the local Fermi
energy in the nearly free-electron approximation is the
small difference of these two large numbers, 0.004 Ry.
Under pressure, the two large quantities change
differently; the energy at the corner is proportional to
a2, while the Fermi energy is proportional to a=*/3c2/3,
The free-electron prediction for the change in local
Fermi energy is Fo=du/dp=0.5 mRy/kbar. The rate
of change of the crystal potential splitting E, is also
magnified. This quantity is related to the pseudo-
potential® by E.=3W (¢). The value® of W for ¢=0 is
about —0.5 Ry ; but for ¢=Kiqo, which gives the energy
gap at the corner, W is very nearly zero. Thus, a
small change in lattice constants can give a large
fractional change in E.. The calculation of O’Sullivan
and Schirber’ using Harrison’s point-ion model® gives
Go=dE,/dp=0.22 mRy/kbar. The other quantities in
the band model should change very little with pressure.
The velocity operators do not depend upon the lattice,
so that the changes in 4 and B are solely due to changes

3 G. A. Alers and J. R. Neighbors, J. Phys. Chem. Solids 7,
58 (1958).

( 325’1‘). G. Berlincourt and M. C. Steele, Phys. Rev. 95, 1421
1954).

33 W. A. Harrison, Phys. Rev. 131, 2433 (1963).

3 W. A. Harrison, Phys. Rev. 118, 1190 (1960).
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TasLE 1. Energy-band parameters and predicted values of
experimental quantities for the needle in zinc.

Case 2 Case 3 Previous
Needle band-edge theory
symmetry type K; Ks

B/A 1.154-0.05 0.7 0.1 0.782
10 E. (Ry) —23 +04 3.0 £1.3 3.5b
102 A (Ry) 2.1 0.1 2.2 £0.1 7.5
103 u (Ry) 2.7 £0.1 2.6 £0.2 1.00
(242+B2)12/3124 0.82+0.02 0.834:0.03 0.892
103 F Ry/kbar 0.5040.14 0.4740.08 0.50¢
103 G Ry/kbar 0.07+0.09 0.22+0.22 0.224
d InHo/dp kbar™ —0.184-0.03 0.04-£0.02
band edge 10%n*/m, 24 +4 28 &S5

a Ruvalds, Ref. 35.

b Stark and Falicov, Ref. 18.

¢ Nearly free-electron value,

d O'Sullivan and Schirber, Ref. 19.

in the wave functions. As the symmetry of a given
state is not changed, the wave function can only be
changed by mixing in other states of the same symmetry,
which differ in energy by at least® 0.4 Ry. The form of
the spin-orbit energy operator does depend upon the
lattice, but most of the contribution comes from near
the ions, where the potential is not changed very much
by the deformation. Thus, we expect the fractional
changes in 4, B, and A to be about the same as the
fractional change in lattice constant = 10=%/kbar,
whereas the fractional changes in u and E, estimated
above are about 107/kbar.

Therefore, we add the two free parameters F=du/dp
and G=dE,/dp to the model, neglecting the change with
pressure of the other parameters. We also add the
experimental results?!

dInP/dp=—0.3240.015 kbar,

d Inm*/dp=0.1440.02 kbar™!,
and
dIn|é8|/dp=—0.1620.08 kbar™!.

In the last quantity, one always takes the smallest
value for |8] (=0.18). The system now contains seven
parameters and seven experimental numbers (not
counting v), so that unique solutions are possible. The
procedure was as follows: The calculations which
determined the band parameters at a fixed B/A4 also
provided numerical derivatives of the quantities P,
m*, Hy, and § with respect to , and u. For each B/4,
values of F and G were chosen so that the experimental
values of dInP/dp and d1n|8|/dp were reproduced,
and the predicted value of dlnmw*/dp calculated.
Finally, B/A was varied until the calculated and
experimental values of d Inm*/dp agreed. The experi-
mental errors in the pressure devivatives allow solu-
tions for a range of B/A values.

The initial results were that solutions exist for case 2
in the B/4 range of 0.9-1.2 and for case 3 in the B/4
range of 0.7-1.1; and no solution exists for case 6 in
the B/A range studied. However, our calculated

McCLURE, AND DOAR 1

-versus-pressure curve is practically linear, while the
experimental results show considerable curvature. It is
possible to keep the two curves in agreement within
experimental error in the range 0-1.5 kbar by choosing
dIn|8]/dp=—0.3240.06. With this choice, the allowed
B/A range for case 2 is 0.8-1.4 and that for case 3 is
0.6-1.2.

We can narrow the range of solutions by making
use of another experimental observation of O’Sullivan
and Schirber.? They observed that the effective masses
for spin up and spin down were not equal. They found
that the higher-energy member of a close pair has an
effective mass at least 49, smaller than that of the
lower-energy member. The magnitude of our calcu-
lated fractional mass difference is about 0.4[ (B/4)—1],
with the signs being such that the results require
B/A>1.1 for case 2 and B/A<0.9 for case 3. This
reduces the size of the B/A range for each solution to
0.3 and is the best that can be done using present
experimental data.

Most of the band parameters are consistent with
theoretical estimates throughout the B/4 range allowed
by the experimental results. However, the parameter G
changes sign in the allowed range for each case. Thus,
we narrow the allowed range a bit by requiring that the
value of G be within 509, of the theoretical estimate.
The results are listed in Table I. Almost all the un-
certainty in the band parameters comes from the
experimental uncertainty in the pressure experiments.
It is important to note that there is an experimental
way of deciding which of the two cases is correct. We
have calculated the pressure dependence of the break-
down field, which is different for the two cases. It is
important that this difficult experimental measurement
be made.

The parameters listed in Table I agree fairly well
with the previous theoretical estimates, which are also
listed in the table. As mentioned before, the nearly-
free-electron approximation gives B/4 =1.0, and this
is the value used by Chambers.l” Ruvald’s® theoretical
value is in good agreement with our case 3. Both
values of E, have reasonable magnitudes, but the value
for case 3 agrees well in sign and magnitude with Stark
and Falicov.’® Chambers found —1.9 and —1.5 mRy
for L,. Both cases yield the same value for the spin-
orbit splitting A, and the value is less than a third of
the value found by Stark and Falicov.’® We could
obtain their value by fitting only the zero-pressure
data and choosing B/A4>2. This choice would require
E.< —0.01 Ry which is in even worse agreement with
Stark and Falicov.!® The disagreement for A is the
most serious one, and may be because Stark and
Falicov treat the entire Brillouin zone with a fairly
simple model while we treat the needle alone to high
accuracy. Chambers!” found 1.2 and 2.2 mRy for A.

The Fermi levels are the same for the two cases, and

3 J. Ruvalds (private communication).
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about 509, larger than the value which the rarabolic
model would give for the same period and effective
mass p=1.8 mRy. The difference is a measure of the
nonparabolicity of the needle, which also causes the
effective mass at the bottom of the band to be about
one-third of its value at the Fermi level. The quantity
(242+B?)12/3124 y is a measure of the strength of the
velocity matrix elements. It is the same in both cases,
and is a little less than Ruvald’s theoretical value.3® An
effect which has not been included in the band model,
but which could reduce 4 and B, is the phonon-
mediated interaction between electrons.® If the energies
we are considering were very small compared to the
Debye energy, the effect of the phonon interaction
would be simply to reduce 4 and B. However, the
Debye energy in zinc is only®” 1.6 mRy so that the
phonon interaction could introduce changes in the
energy-band structure on the scale of the model we use.

The rate of change of the Fermi energy with pressure
is in good agreement with the free-electron estimate for
both cases. Actually, we should compare the free-
electron value with the rate of change in the Fermi
energy measured from the average energy of the three
levels 2E./3. In that case, the rates of change are
F’=0.45 mRy/kbar for case 2 and F/=0.54 mRy/kbar
for case 3, the corrections being smaller than the error
range. As mentioned above, we reduced the range of
B/A tokeep the value of G near the previous theoretical
estimate, but it is important to note that G did agree
with the theory in part of the allowed B/A4 range. Also,
as remarked above, the predicted change in breakdown
field is different for the two cases. If we do not use the
condition on G to narrow the B/A range, the uncer-
tainties are larger but the predictions for the change of
breakdown field with pressure are still distinct. How-
ever, if we do not use the difference in spin-up and
spin-down masses, the ranges of the predicted d InH/dp
overlap somewhat. Not included in the table is the
calculated pressure variation of v, which is less than 0.01
in 1.5 kbar, in agreement with experiment.?

Reviewing the above discussion, we see that both
cases agree for all the band parameters except B/A
and E., for which case 3 agrees with previous theory.
Thus, case 3 is for theoretical reasons the most likely
of the two cases allowed by experiment.

Note that case 2 corresponds to a g factor of —170
and case 3 to 4-170 using our adopted convention. This
agrees with the conclusion of O’Sullivan and Schirber,?
even though their simple model for the Landau levels
does not agree with our results. Both of the cases are
in the region where the WKB result for § is unreliable.

Figures 2 and 3 are calculated for case 2. For case 3,
Fig. 2 would look roughly the same, except that the

3 See, for example, S. Engelsberg and J. R. Schrieffer, Phys.
Rev. 131, 993 (1963); P. B. Allen, M. L. Cohen, L. M. Falicov,
and R. V. Kasowski, Phys. Rev. Letters 21, 1794 (1968).

37 G. Borgonovi, G. Caglioti, and J. J. Antal, Phys. Rev. 132,
683 (1963).
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K level lies below the K, level by about 509, more than
the Kg-K, splitting. The Fermi-surface cross section
for case 3 is very close to that in Fig. 3, which is quite
triangular. Although Fig. 4 is calculated for case 3,
the same curve for case 2 is almost identical, as a
function of 1/H, but with spin up and spin down
interchanged.

We have extended our calculations of the de Haas—
van Alphen period to 16 kbar, assuming that p and E.
are strictly linear with pressure. Our results can be
approximately described by 1/P = (140.32p4-0.018p?)/
Py, where the units of p are kbar. They agree well with
the measurements of O’Sullivan and Schirber,'® up to 5
kbar, but predict a change in period at 16 kbar which
is 509 larger than that observed by Itskevich et al.?

V. EFFECT OF ALLOYING

Higgins and Marcus have measured the change of
the de Haas—van Alphen period,” mass, and break-
down field® produced by alloying zinc with copper and
aluminum. They concluded that the results could not be
explained by changing the Fermi energy and band gap
in a simple model. Of course, it is well known that
alloying destroys the periodic symmetry of the lattice
so that the band model for pure zinc should not apply.
However, it is still interesting to see whether or not the
data could be accounted for by distorting the pure
zinc band model, especially because of the magnifying
effect of the change in axial ratio ¢/a. Accordingly, we
make the same type of model as for the change with
pressure, where F and G now give the changes with
concentration of solute x. The quantities 4, B, and A
are expected to have fractional changes of the order of
%, while the changes in u and E, are magnified by the
change in axial ratio (% is also changed by the fact that
the pseudopotential for the solute can be quite dif-
ferent than that for zinc). The pure-zinc band param-
eters are now known, so we need determine only the
two parameters F and G. We make this determination
using the changes in period and mass, and then predict
the change in the breakdown field. The experimental
data for copper are d InP/dx=—1404-20, d lnm*/dx
=0450, and dInH,/dx="700. The solution for case
2is F=0.40t00.24 Ry, G=1.3t0 2.2 Ry, and d InH,/dx
= —2300 to —2300; while for case 3 we find F=0.26 to
0.62 Ry, G=—0.04 to —1.8 Ry, and d InH,/dx=18 to
140. The free-electron estimate for F’ (the change of
Fermi level measured from 2E,/3) is 0.28 Ry compared
with —0.5-0.1 Ry for case 2 and 0.25-0.02 Ry for case
3. A rough estimate of G can be made assuming that
W (q) for copper® is —0.2 Ry, yielding a value of —0.3
Ry for G. We see that the case 3 results for F’ and G are
in reasonable agreement with the simple estimates, but
that neither case can account for the experimental
change in the breakdown field. For the aluminum
alloys, neither the period nor the mass changes within
experimental error, so that F and G are small. How-
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ever, the experimental result is d InH,/dx=2400, so
the distorted band model cannot explain the effect of
alloying upon breakdown, in agreement with the
conclusion of Higgins and Marcus.’

Lawson and Gordon? have measured the de Haas~
van Alphen periods and masses as a function of tem-
perature for alloys with cadmium and mercury, which
have the same number of valence electrons per atom
as pure zinc. They found that their results and those
for pure zinc under pressure fall on the same curve of
period-versus-axial ratio ¢/a, and that d1nP/d(c/a)
=120411. They also find that the mass change is
given by d Inm*/d(c/a) = —100425. Redefining F and
G to give the changes in u and E, with respect to ¢/a,
we find for case 2, F=0.14-0.2 Ry and G=0.940.5 Ry,
and for case 3, F=0.04-0.2 Ry and G=—0.9£0.5 Ry.
The F’ values from our results are —0.44-0.1 Ry for
case 2 and —0.34-0.1 Ry for case 3, both being in
reasonable agreement with the nearly-free-electron
value, F’=—0.26 Ry. Note that the change in the
crystal potential gap is much larger than the change in
the Fermi energy. Both case 2 and case 3 predict that
the K; and Kj; levels cross at ¢/a=1.83340.002 and
that the needle disappears at ¢/a=1.8364-0.003. The
¢/a value for pure zinc? is 1.830. The lower end of the
prediction for disappearance of the needle is inconsistent
with Lawson and Gordon’s observation of de Haas—van
Alphen oscillations for ¢/a ratios as large as 1.836. Thus,
our estimate is that the needle disappears at about
¢/a=1.8384+0.001, in good agreement with a linear
extrapolation of the data. This ¢/a value is also near
the maximum of steady diamagnetism found by Lawson
and Gordon.

VI. SUMMARY AND CONCLUSIONS

Our numerical calculations show that the network
theory of Pippard,”-!! using the semiclassical breakdown
probability, corrected by the Onsager-Lifshitz?” rules
for the spacing of Landau levels, and given the correct
de Haas—van Alphen phase factors, yields good results
for all the features of the Landau levels. The probabili-
ties calculated by Falicov, Pippard, and Sievert!® and
used by them to explain the magnetoresistance experi-
ments are accurate, a conclusion in agreement with
Chambers.” Solution of the network model for the
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density of states and then carrying out a Fourier
analysis should yield the effect of breakdown upon the
de Haas-van Alphen effect, but it is not at present
clear if this calculation would yield the result of Falicov
and Stachowiak.!?

The Bennett-Falicov® theory of the g factor is ac-
curate only if the Fermi level is near the needle band
edge. The simple WKB theory of the g factor® is
accurate far from the discontinuity which, occurs at
Fe~—(A/3)+2.5u(1—B/A). Because of the depen-
dence on B/A, it is not yet possible to say whether the
WXKB theory is valid for the other hexagonal metals.

Using the experimental data from the de Haas—van
Alphen effect and its change with pressure, two possible
sets of band parameters have been found which are
allowed experimentally. Agreement with previous
theory selects case 3, but an experimental way of
choosing would be provided by a measurement of the
change in breakdown field with pressure.

The principle effect of pressure upon the band struc-
ture is to change the local Fermi energy and the crystal
potential gap. Changes of these quantities agreeing with
simple theoretical estimates explain the pressure de-
pendence of the de Haas—van Alphen effect.

The changes in de Haas-van Alphen period and
effective mass due to alloying by Cu, Al, Cd, and Hg
can be accounted for by changing the local Fermi energy
and the crystal potential gap by amounts which agree
with simple theoretical estimates. However, the pre-
dicted change in breakdown field is in strong disagree-
ment with the experiment, which is the same conclusion
reached by Higgins and Marcus.’

Note added in proof. The rate of change of E, with
respect to ¢/a from band theory'® is approximately
G=—1mRy, in good agreement with case 3.
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